ENTRIES TAGGED "Hadoop"

Big Data systems are making a difference in the fight against cancer

Open source, distributed computing tools speedup an important processing pipeline for genomics data

As open source, big data tools enter the early stages of maturation, data engineers and data scientists will have many opportunities to use them to “work on stuff that matters”. Along those lines, computational biology and medicine are areas where skilled data professionals are already beginning to make an impact. I recently came across a compelling open source project from UC Berkeley’s AMPLab: ADAM is a processing engine and set of formats for genomics data.

Second-generation sequencing machines produce more detailed and thus much larger files for analysis (250+ GB file for each person). Existing data formats and tools are optimized for single-server processing and do not easily scale out. ADAM uses distributed computing tools and techniques to speedup key stages of the variant processing pipeline (including sorting and deduping):

Variant Calling Pipeline

Very early on the designers of ADAM realized that a well-designed data schema (that specifies the representation of data when it is accessed) was key to having a system that could leverage existing big data tools. The ADAM format uses the Apache Avro data serialization system and comes with a human-readable schema that can be accessed using many programming languages (including C/C++/C#, Java/Scala, php, Python, Ruby). ADAM also includes a data format/access API implemented on top of Apache Avro and Parquet, and a data transformation API implemented on top of Apache Spark. Because it’s built with widely adopted tools, ADAM users can leverage components of the Hadoop (Impala, Hive, MapReduce) and BDAS (Shark, Spark, GraphX, MLbase) stacks for interactive and advanced analytics.

Read more…

Comment |

An Introduction to Hadoop 2.0: Understanding the New Data Operating System

Sneak peek at an upcoming tutorial at Strata Santa Clara 2014

By Rich Raposa

Apache Hadoop 2.0 represents a generational shift in the architecture of Apache Hadoop. With YARN, Apache Hadoop is recast as a significantly more powerful platform – one that takes Hadoop beyond merely batch applications to taking its position as a ‘data operating system’ where HDFS is the file system and YARN is the operating system.

YARN is a re-architecture of Hadoop that allows multiple applications to run on the same platform. With YARN, applications run “in” Hadoop, instead of “on” Hadoop:

R1

Read more…

Comments: 2 |

Discovering Hadoop and HBase

By Ronan Stokes

Ronan Stokes

Ronan Stokes

My earliest introduction to Apache Hadoop, several years ago, was using Hadoop with one of the popular NoSQL databases to build data acquisition pipelines for a semantic search engine for a potential customer. Originally, I had used classic ETL and database tools but the resulting data acquisition, cleansing, and entity extraction pipeline took days to run over a workload of several million medium / large XML documents. Like many others adopting NoSQL, we could have scaled up our relational approach with expensive server and software purchases, but the budget constraints meant that we had to look at other alternatives.

I started to experiment with using a mix of Hadoop components, open source ETL tools, XSLT (as the source data was archives of XML documents), and NoSQL technologies along with custom Java components to perform entity detection and custom plugins for the particular ETL software. The resulting prototype solution performed the same corpus preparation in hours even on a small proof-of-concept cluster.

For many approaching Hadoop solutions for the first time, the natural tendency is to view Hadoop from the perspective of just one facet of existing technologies such as databases, machine-learning, cloud computing, distributed storage, or distributed computing. While this can be very useful as a learning tool, it can lead to some misconceptions about the Hadoop components and ecosystem or applicable use cases.

Read more…

Comment: 1 |

Databricks aims to build next-generation analytic tools for Big Data

A new startup will accelerate the maturation of the Berkeley Data Analytics Stack

Key technologists behind the Berkeley Data Analytics Stack (BDAS) have launched a company that will build software – centered around Apache Spark and Shark – for analyzing big data. Details of their product and strategy are sparse, as the company is operating in stealth mode. But through conversations with the founders of Databricks, I’ve learned that they’ll be building general purpose analytic tools that can leverage HDFS, YARN, as well as other components of BDAS.

It will be interesting to see how the team transitions to the corporate world. Their Series A funding round of $14M is being led by Andreessen Horowitz. The board will be composed of Ben Horowitz, Scott Shenker, Matei Zaharia, and Ion Stoica.

Read more…

Comment |

Stream Processing and Mining just got more interesting

A general purpose stream processing framework from the team behind Kafka and new techniques for computing approximate quantiles

Largely unknown outside data engineering circles, Apache Kafka is one of the more popular open source, distributed computing projects. Many data engineers I speak with either already use it or are planning to do so. It is a distributed message broker used to store1 and send data streams. Kafka was developed by Linkedin were it remains a vital component of their Big Data ecosystem: many critical online and offline data flows rely on feeds supplied by Kafka servers.

Apache Samza: a distributed stream processing framework
Behind Kafka’s success as an open source project is a team of savvy engineers who have spent2 the last three years making it a rock solid system. The developers behind Kafka realized early on that it was best to place the bulk of data processing (i.e., stream processing) in another system. Armed with specific use cases, work on Samza proceeded in earnest about a year ago. So while they examined existing streaming frameworks (such as Storm, S4, Spark Streaming), Linkedin engineers wanted a system that better fit their needs3 and requirements:

Linkedin Samza

Read more…

Comments: 2 |

Running batch and long-running, highly available service jobs on the same cluster

Moving different workloads and frameworks onto the same collection of machines increases efficiency and ROI

As organizations increasingly rely on large computing clusters, tools for leveraging and efficiently managing compute resources become critical. Specifically, tools that allow multiple services and frameworks run on the same cluster can significantly increase utilization and efficiency. Schedulers1 take into account policies and workloads to match jobs with appropriate resources (e.g., memory, storage, processing power) in a large compute cluster. With the help of schedulers, end users begin thinking of a large cluster as a single resource (like “a laptop”) that can be used to run different frameworks (e.g., Spark, Storm, Ruby on Rails, etc.).

Multi-tenancy and efficient utilization translates into improved ROI. Google’s scheduler, Borg, has been in production for many years and has led to substantial savings2. The company’s clusters handle a variety of workloads that can be roughly grouped into batch (compute something, then finish) and services (web or infrastructure services like BigTable). Researchers recently examined traces from several Google clusters and observed that while “batch jobs” accounted for 80% of all jobs, “long service jobs” utilize 55-60% of resources.

There are other benefits of multi-tenancy. Being able to run analytics (batch, streaming) and long running services (e.g., web applications) on the same cluster significantly lowers latency3, opening up the possibility for real-time, analytic applications. Bake-offs can be done more effectively as competing tools, versions, and frameworks can be deployed on the same cluster. Data scientists and production engineers leverage the same compute resources, making it easier for teams to work together across the analytic lifecycle. An additional benefit is that data science teams learn to build products and services that factor in efficient utilization and availability.

Mesos, Chronos, and Marathon
Apache Mesos is a popular open source scheduler that originated from UC Berkeley’s AMPlab. Mesos is based on features in modern kernels for resource isolation (cgroups in Linux). It has been in production for a few years at Twitter4, airbnb5, and many other companies – AMPlab simulations showed Mesos comfortably handling clusters with 30K servers.

Read more…

Comments: 2 |

Interactive Big Data analysis using approximate answers

As data sizes continue to grow, interactive query systems may start adopting the sampling approach central to BlinkDB

Interactive query analysis for (Hadoop scale data) has recently attracted the attention of many companies and open source developers – some examples include Cloudera’s Impala, Shark, Pivotal’s HAWQ, Hadapt, CitusDB, Phoenix, Sqrrl, Redshift, and BigQuery. These solutions use distributed computing, and a combination of other techniques including data co-partitioning, caching (into main memory), runtime code generation, and columnar storage.

One approach that hasn’t been exploited as much is sampling. By this I mean employing samples to generate approximate answers, and speed up execution. Database researchers have written papers on approximate answers, but few working (downloadable) systems are actually built on this approach.

Approximate query engine from U.C. Berkeley’s Amplab
An interesting, open source database released yesterday0 uses sampling to scale to big data. BlinkDB is a massively-parallel, approximate query system from UC Berkeley’s Amplab. It uses a series of data samples to generate approximate answers. Users compose queries by specifying either error bounds or time constraints, BlinkDB uses sufficiently large random samples to produce answers. Because random samples are stored in memory1, BlinkDB is able to provide interactive response times:

BlinkDB

Read more…

Comment: 1 |

Surfacing anomalies and patterns in Machine Data

Compelling large-scale data platforms originate from the world of IT Operations

I’ve been noticing that many interesting big data systems are coming out of IT operations. These are systems that go beyond the standard “capture/measure, display charts, and send alerts”. IT operations has long been a source of many interesting big data1 problems and I love that it’s beginning to attract the attention2 of many more data scientists and data engineers.

It’s not surprising that many of the interesting large-scale systems that target time-series and event data have come from ops teams: in an earlier post on time-series, several of the tools I highlighted came out of IT operations. IT operations involves monitoring many different hardware and software systems, a task that requires a variety of tools and which quickly leads to “metrics overload”. A partial list includes data captured from a wide range of application log files, network traffic, energy and power sources.

The volume of IT ops data has led to new tools like OpenTSDB and KairosDB – time series databases that leverage HBase and Cassandra. But storage, simple charts, and lookups are just the foundation of what’s needed. IT Ops track many interdependent systems, some of which might be correlated3. Not only are IT ops faced with highlighting “unknown unknowns” in their massive data sets, they often need to do so in near realtime.

Read more…

Comment |

Tightly integrated engines streamline Big Data analysis

A new set of analytic engines make the case for convenience over performance

The choice of tools for data science includes1 factors like scalability, performance, and convenience. A while back I noted that data scientists tended to fall into two camps: those who used an integrated stack, and others who tended to stitch together frameworks. Being able to stick with the same programming language and environment is a definite productivity boost since it requires less setup time and context-switching.

More recently I highlighted the emergence of composable analytic engines, that leverage data stored in HDFS (or HBase and Accumulo). These engines may not be the fastest available, but they scale to data sizes that cover most workloads, and most importantly they can operate on data stored in popular distributed data stores. The fastest and most complete set of algorithms will still come in handy, but I suspect that users will opt for slightly slower2, but more convenient tools, for many routine analytic tasks.

Read more…

Comment |

Moving from Batch to Continuous Computing at Yahoo!

Spark, Storm, HBase, and YARN power large-scale, real-time models.

My favorite session at the recent Hadoop Summit was a keynote by Bruno Fernandez-Ruiz, Senior Fellow & VP Platforms at Yahoo! He gave a nice overview of their analytic and data processing stack, and shared some interesting factoids about the scale of their big data systems. Notably many of their production systems now run on MapReduce 2.0 (MRv2) or YARN – a resource manager that lets multiple frameworks share the same cluster.

Yahoo! was the first company to embrace Hadoop in a big way, and it remains a trendsetter within the Hadoop ecosystem. In the early days the company used Hadoop for large-scale batch processing (the key example being, computing their web index for search). More recently, many of its big data models require low latency alternatives to Hadoop MapReduce. In particular, Yahoo! leverages user and event data to power its targeting, personalization, and other “real-time” analytic systems. Continuous Computing is a term Yahoo! uses to refer to systems that perform computations over small batches of data (over short time windows), in between traditional batch computations that still use Hadoop MapReduce. The goal is to be able to quickly move from raw data, to information, to knowledge:

On a side note: many organizations are beginning to use cluster managers that let multiple frameworks share the same cluster. In particular I’m seeing many companies – notably Twitter – use Mesos1 (instead of YARN) to run similar services (Storm, Spark, Hadoop MapReduce, HBase) on the same cluster.

Going back to Bruno’s presentation, here are some interesting bits – current big data systems at Yahoo! by the numbers:

Read more…

Comment |